1 3 LOGIC PROGRAMMING: PROLOG
e i

13.1 HISTORY AND MOTIVATION

We now come to the third major programming paradigm represented by fifth-generation lan-
guages: logic programming, a step toward nonprocedural programming.

Nonprocedural Programming: Saying ‘What’ Instead of ‘How’

Whenever things can be arranged in a series, it is natural to ask if there is a first or last ele-
ment in the series. For example, once we know that one program can be smaller than another
and perform the same function, it is natural to ask if there is a smallest program to do this
function. Similarly, the notion of a faster program leads us to seek a fastest program, and the
notion of a better program (by any criterion) leads us to ask if there is a best program.

One way we judge a programming language is whether it is a higher-level language than
another language. A language is higher level than another if we can express the same pro-
gram with less detail. That is, a higher-level language does more automatically. This is valu-
able because if less is done manually, there is less chance of human error. An alternative
way of expressing this is that a higher-level language is less procedural than a lower-level
language. In other words, in a higher-level language we can concentrate more on what is to
be done, and less on how to do it.

The notion of higher level immediately suggests the notion of highest level. Can there
be a highest-level language? Similarly, the notion of a less-procedural language suggests the
notion of a least-procedural language or even a nonprocedural language. This would be a
language in which the programmer stated only what was to be accomplished and left it to
the computer to determine how it was to be accomplished. In this exercise we are taking
technological extrapolation to the limit (Section 1.4).

Consider the following example. Suppose we wished to sort an array. How would we
express this problem in a nonprocedural language? We would have to describe what we
meant by sorting an array. For example, we might say that B is a sorting of A if and only if
B is a permutation of A and B is ordered. We might also have to describe what we meant by

445

446 LOGIC PROGRAMMING: PROLOG

a permutation of an array and what we meant by an array being ordered. For the latter we
might say that B is ordered if B[i] = B[j] whenever i < j.

It would be the responsibility of the nonprocedural programming system to determine
how to create an array B that is an ordered permutation of a given array A. Conceivably it
might use any sorting algorithm, including a bubble sort, Shell-sort, or quick-sort. This se-
lection is part of the procedural part of the programming process, which we are assuming is
performed automatically.

Local Programming and Automatic Deduction

Nonprocedural programming turns out to be related to an active research area in artificial in-
telligence: automated theorem proving. The goal of automated theorem proving is the de-
velopment of programs that can construct formal proofs of propositions stated in a symbolic
language. How is this connected with nonprocedural programming? Suppose that for a given
array A we wanted to prove the following proposition:

There is an array B that is a sorting of A.

One way to prove this proposition is to exhibit the array B, thus proving that such an array
exists. This is exactly the strategy that would be chosen by many automated theorem-
proving systems. Thus, a side effect of proving that the array A can be sorted is construc-
tion of the sorted array.

Logic programming makes explicit use of the observation, made in the early 1970s by
Pay Hayes, Robert Kowalski, Cordell Green, and others, that applying standard deduction
methods often has the same effects as executing a program. Programs are expressed in the
form of propositions that assert the existence of the desired result. The theorem prover then
must construct the desired result to prove its existence.

In this chapter we investigate logic programming as the third example of a fifth-
generation programming technology. We illustrate logic programming by means of the logic-
oriented language Prolog.

Prolog Uses Symbolic Logic as a Programming Language

In the early 1970s, Alain Colmerauer, Philippe Roussel, and their colleagues in the Groupe
d’Intelligence Artificielle (GIA) of the University of Marseilles developed a programming
language based on these ideas. It is called Prolog, which stands for “programming in logic.”
The GIA group developed a Prolog interpreter in Algol-W in 1972, in FORTRAN in 1973,
and in Pascal in 1976. Since then Prolog interpreters and compilers have been developed for
a number of computer systems, including personal computers.

Prolog has been growing in popularity as a language for artificial intelligence work since
the mid-1970s; its proponents have suggested it as the successor to LISP for these applica-
tions. Although there are now many variants of logic programming, we will investigate Pro-
log since it is typical.!

! Prolog has not been standardized. In this chapter we follow the Edinburgh dialect described in Clocksin
and Mellish (1984).

13.2 DESIGN: STRUCTURAL ORGANIZATION 447

13.2 DESIGN: STRUCTURAL ORGANIZATION

A Program Is Structured Like the Statement of a Theorem

Consider the Prolog program in Figure 13.1. It is divided into three major parts, much like
the statement of a mathematical theorem, First, we have a series of clauses that define the
problem domain, which in this case is kinship relations. For example, the first line can be
read “X is a parent of Y if X is the father of Y.” Thus, the first two lines express the idea
that X is a parent of ¥ if either X is the father of ¥ or X is the mother of Y. The third line
<6an be read, “X is a grandparent of Z if, for some Y, X is a parent of Y and Y is a parent
of X.” The next two lines are a recursive definition of the ancestor relation: “X is an an-
cestor of Z if either X is a parent of Z or, for some ¥, X is a parent of Y and Y is an an-
cestor of Z.” You can see that it is fairly easy to translate common ideas about kinship
into Prolog.

The first part of this Prolog program states a number of general principles; the second
part states a number of particular facts, Thus, we see that Albert is the father of Jeffrey and
that Alice is the mother of Jeffrey. This part of the Prolog program can be thought of as a
database that defines interrelationships among the atomic individuals (people, in this ex-
ample).

The parts of the Prolog program discussed so far all make assertions. To get the pro-
gram to compute something, we must ask a question. This is the purpose of goals, which are

parent (X,Y) :- father (X,v).
parent (X,Y) - mother (X,v) .
grandparent (X, Z) :- parent (X,Y), parent (Y, z) .
ancestor (X,Z) :- parent (X, z) .
ancestor (X,Z) :- parent (X,Y), ancestor (Y, z) .
sibling(X,v) :- mother (M, X) , mother (M, Y),

father (F,Xx), father(F,v), X \= Y.
cousin(X,y) :- parent (U, X), parent (V,Y), sibling (U, V).

father(albert, jeffrey).
mother (alice, Jjeffrey).
father(albert, george) .
mother (alice, george) .
father(john, mary) .
mother (sue, mary) .
father(george, cindy) .
mother (mary, cindy) .
father(george, victor) .
mother (mary, victor) .

‘= ancestor (X, cindy), sibling (X, Jjeffrey).

Figure 13.1 Example Prolog Program

448

LOGIC PROGRAMMING: PROLOG

usually typed interactively to a Prolog system. We can see an example of a goal in the last
line of the Prolog program in Figure 13.1:

:— ancestor (X, cindy), sibling(X, jeffrey).

This goal asks if there is an individual who is an ancestor of Cindy and a sibling of Jeffrey.
In this case, there is such an individual satisfying the goal, so the Prolog system responds

X = george

We can find out if there are other individuals satisfying the goal by typing a semicolon af-
ter the previous answer.? In this case, there are no more, so the system responds no.

Some goals merely ask if a fact is provable on the basis of the assertions. For example,
a Prolog system will respond as shown to these goals:

:— grandparent (albert, wvictor).
yves

:— cousin(alice, john).

no

Note that when the Prolog system responds no it does not necessarily mean that the goal is
false; it means only that it could not be proved on the basis of the general rules and partic-
ular facts provided.

Some goals may require several individuals for their satisfaction and may be satisfiable
in several ways. For example, if we type the goal

:— sibling(A,B).
we will receive the answer
A = jeffrey, B = george

There may be more solutions, so we type a semicolon after each, which yields the follow-
ing answers:

A = jeffrey, B = george;
A = george, B = jeffrey;

A = cindy, B = victor;
A = victor, B = cindy;
no

Notice that the system responds no when there are no more solutions. Also notice that the
system produces all possible ways of satisfying the goal, even if some of them are uninter-
esting.

B Exercise 13-1: Show in detail how each of the above pairs satisfies the goal : - sib-
ling (A, B).

2 This is the convention on many Prolog systems, but it is far from standard.

13.2 DESIGN: STRUCTURAL ORGANIZATION 449

B Exercise 13-2: Show in detail that X = george satisfies the goal

:= ancestor (X, cindy), sibling (X, jeffrey) .

B Exercise 13-3: Show in detail that the goal : - grandparent (albert,vic-
tor) is satisfiable.

B Exercise 13-4: Show in detail that the goal : - cousin(alice, john) is unsatis-
fiable.

B Exercise 13-5: Recall the personnel file example of Chapter 9 (Section 9.1). How might
. the facts about Don Smith be represented in Prolog?

Proving the Theorem Generates the Answer

The Prolog system may arrive at the answer X = george by generating a proof such as
the following: The goal is to find an X such that ancestor (X, cindy) and sibling
(X, jeffrey).Now, sibling (X, jeffrey) is true if there are individuals M and
F such that mother (M, jeffrey), father (F, jeffrey), mother (M, X) s
and father (F, X).Now we see that if we setM = aliceand F = albert, we
will have mother (M, jeffrey) and father (F, jeffrey). But it is now nec-
essary to find an X such that mother (alice, X) and father (albert, X) ; this
X is george.

This is not our answer though since there may be other X’s that are siblings of Jeffrey;
we must also determine if ancestor (george, cindy) is true. Now ancestor
(george, cindy) is true if either parent (george, cindy) or there is a Y such
that parent (george, Y) and ancestor (Y, cindy). Further, parent
(george, cindy) is true if either father (george, cindy) or mother
(george, cindy) is true. But we are given father (george, cindy), so the
theorem is true with X = george.

B Exercise 13-6: Determine if the following goals can be satisfied, and if so, exhibit the
individuals that satisfy them:

:— sibling (X, cindy) .

i~ ancestor (albert, victor).

:— ancestor(john, X).

:— ancestor(jeffrey, mary).

:— grandparent (john, X), parent (Y, X), sibling(y, jeffrey).
:— cousin(X,Y).

Clauses Are Constructed from Relationships

A Prolog program is constructed from a number of clauses. These clauses have three forms:
hypotheses (or facts) such as

mother (mary, cindy).

450 LOGIC PROGRAMMING: PROLOG

goals, such as

:— ancestor(john, X) .

and conditions (or rules) such as

grandparent (X,Z) :- parent(X,Y), parent(Y,Z).

In pure logic programming, the order of these clauses is irrelevant to the logic of the pro-
gram, although it may be very important in Prolog (which is only logic-oriented). Issues re-
lating to the ordering of clauses are discussed in Section 13.4.

The general form of a clause is

(head) :— (body).

If (head) is omitted, the clause is considered a goal; if :— (body) is omitted, it is considered
a hypothesis. Both the (head) and the (body) are composed of relationships (also called pred-
ications or literals), which are applications of a predicate (such as parent) to one or more
terms, (such as john and X):

parent (john, X)

Relationships are intended to represent properties of and relations among the individuals of
the problem domain. Terms may be (1) atoms, such as john or 25; (2) variables, such as
X; or (3) compound terms, which are described below. Note that many Prolog systems re-
quire variables to begin with an uppercase letter, and other terms to begin with a lowercase
letter (or a nonletter). This is the convention adopted in this chapter, although there is little
standardization among Prolog systems.?

Prolog, like many logic programming languages, allows at most one relationship in the
(head) of a clause but any number in the (body). This restriction is called the Horn clause
form; it permits an especially efficient kind of automatic deduction.

¥ Exercise 13-7: To define brother, sister, son, and daughter, we need to know
the sex of individuals. Add rules and facts to the program of Figure 13.1 to define these
predicates. Hint: Define male and female.

Terms Can Be Compound

In all of the examples we have seen so far, the terms have been simple names—either con-
stants such as cindy or variables such as X. Since terms represent individuals in the prob-
lem domain, constant terms represent specific individuals and variable names represent in-
definite individuals. Although it is easy to show that any proposition can be expressed by
using just constant and variable terms, it is often convenient to allow expressions as terms,
which are called compound terms. These give us the ability to describe individuals without
giving them individual names.

3 Also, some Prolog systems use ‘<, ‘i£’ or other symbols instead of ‘:-’.

13.3 DESIGN: DATA STRUCTURES 451

The value of compound terms will be clearer if we look at an example. Suppose that we
wanted to write a Prolog program to do symbolic differentiation. We must express the idea
that the derivative of U + V with respect to X is DU + DV, where DU is the derivative with
respect to X of U and DV is the derivative with respect to X of V. These ideas are easy to
write using compound terms:

d(X, plus(U,V), plus(DU,DV)) :- d(X,U,DU), d(X,V,DV).

The name plus is called a functor because it acts in many ways like a function. Notice,
however, that in the compound term plus (U, V) no function is being called; rather this
term is a data structure similar to the LISP list (plus U V). A functor is just a tag that
- can be used on data structures (i.e., compound terms).
The above differentiation rule can be made even clearer if we allow (as some Prologs
do) the use of infix functors:

d(X, U + Vv, DU + DV) :- d(X, U, DU), d(X, V, DV).

Here DU + DV does not mean arithmetic addition; it is simply an alternate notation for the
compound term plus (DU, DV).

To express this clause without the use of compound terms requires us to introduce a
predicate sum (X, Y, Z), which means X + Y = Z. The resulting clause for the deriva-
tive of a sum is

a(x, w, z) :- sum(U, VvV, W), d(X, U, DU), d(X, V, DV),

sum (DU, DV, Z).
This is considerably more difficult to read and also has some subtle difficulties that are
discussed later (p. 458). We will see further applications of compound terms in Section

13.3, Data Structures. (See Figure 13.2 for a more complete symbolic differentiation pro-
gram.)

13.3 DESIGN: DATA STRUCTURES

There Are Few Primitives and No Constructors

We will see in the following subsection that there are essentially no data structure construc-
tors in Prolog. Rather, data structures are defined implicitly by their properties. The same
approach could be used to define all data types, including traditionally primitive types such
as the integers. For example, the natural numbers and natural number arithmetic could be
defined by clauses such as these:

sum(succ(X), Y, succ(Z)) :- sum(X, Y, 2Z).
sum(0, X, X).
dif(X, ¥, Z) :- sum(Z, Y, X).

The first clause says that the sum of the successor of X plus Y is the successor of Z, if the
sum of X and Y is Z. The second clause says that the sum of zero and X is X. The third clause

-

452 LOGIC PROGRAMMING: PROLOG

says that the difference of X and Y is Z, if the sum of Z and Y is X. In effect, this is a re-
cursive definition of arithmetic. If we type the goal

:— sum(succ(succ(0)), succ(succ(succ(0))), A).
(meaning 2 + 3 = A), we will get the answer
A = succ(succ(succ(succ(succ(0)))))

(meaning 5).
Although this definition of addition and subtraction is correct, it would be very ineffi-
cient to use since all computers implement integer arithmetic directly. Hence, all Prolog sys-
i tems build in certain predicates and functions for basic arithmetic. Unfortunately, as usually
implemented, the logical properties are compromised. For example, addition cannot be done
“backward” as is done in the above definition of dif. This is discussed further in Section
134, p. 471.
The small number of built-in data types and operations in Prolog is an example of the
Simplicity Principle. The uniform treatment of all data types as predicates and terms is an
example of the Regularity Principle.

B Exercise 13-8: Explain in detail the satisfaction of the goal corresponding to 2 + 3 = A.

B Exercise 13-9: Write a goal corresponding to 4 — 2 = D and show its satisfaction.

Compound Terms Can Represent Data Structures

Prolog does not have a fixed set of data structure constructors as Pascal and Ada do. Rather,
Prolog can operate directly with a logical description of the properties of a data structure.
LISP-style lists form a good example of this.

Recall that in Chapter 9, Section 9.3, we saw these equations, which form an abstract
definition of LISP lists:

(car (cons XL)) = X
(cdr (cons XL)) = L
(cons (car L) (cdr L)) = L, fornonnull L

where L is a list and X is an atom or list.

It turns out that of these only the first two are necessary, since we can prove the third if we as-
sume that every list is either nil or the result of a cons call (you will prove this in an exercise).
We take the first two equations as a basis for a Prolog definition of lists:

car(cons(X, L), X).
cdr(cons(X, L), L).

This means that if we take the car of cons(X, L), we’ll get X, and if we take the cdr of
cons(X, L), we’ll get L. Notice that car and cdr are predicates; for example, car(L, A)
means that the car of L is A. On the other hand, cons is a functor; thus, cons (a,nil)
is a compound term with components a and nil.

To complete this implementation of lists, we need to define the predicates null and

13.3 DESIGN: DATA STRUCTURES 453

list. When is something a list? There are two ways to get a list in LISP: (1) take the prim-
itive list, nil, or (2) construct a list by applying cons to an arbitrary value and a list. In
other words, X is a list if either it is nil or it is a result of cons:

list(nil).
list(cons (X,L)) :- list(L).

Since the only way to get a null list is as a result of nil, we write
null(nil).

Notice that we have not written a rule for null (L) for the case when L is nonnull: Prolog
will take a list to be nonnull when it cannot prove that it is null (via the fact stated above).

There is something rather unusual going on here: There is no separate representation for
lists; lists are represented by the expressions that construct them. Thus, we might type into
a LISP system

(car (cons ’'(a b) ’'(c d4)))
(a b)

To accomplish the same thing in Prolog, we would enter the goal:

:— car(cons(cons(a, cons(b,nil)),
cons(c, cons(d,nil))), X).
X = cons(a,cons(b,nil))

We can see that the answers are equivalent although the LISP notation for constant lists
is much clearer. To solve this readability problem, some Prolog systems allow infix opera-
tors in compound terms. For example, if " were used for cons, the above goal and its so-
lution would be*

:— car((a.b.nil).(c.d.nil), X)
X = a.b.nil

Indeed, most Prolog systems make a special case of the dot operator and allow the abbreviation
[Xl, X2 ... Xn] = Xl.Xz."'.Xn.l’lil
In addition, nil is usually written []. Thus, we could write

:— car([[a,bl,c,d], X).
X = [a,b]

as expected. Do not let the syntactic sugar fool you, though: Lists are just compound terms.
B Exercise 13-10: Given that every list L is either nil or the result of a cons, prove
(cons (car L) (cdr L)) = L, for nonnull L

from the other two list equations.

4 Note that *.’ is right-associative: a.b.nil means a. (b.nil).

454

LOGIC PROGRAMMING: PROLOG

Components Are Accessed Implicitly

Let’s consider an example using these definitions of lists: the append function described
in Chapter 9 (Section 9.3). We will define this function as a predicate append such that
append(X, Y, Z) means that Z is the result of appending X and Y. The approach is the same
as we used in Chapter 9: First handle the primitive (null) list and then handle constructed
lists. The clauses are

append([], L, L).
append(X.L, M, X.N) :- append(L, M, N).

(We use the .’ abbreviation for cons.) The last clause can be read: “The result of appending
the cons of X and L to M is the cons of X and N, where N results from appending L and M.”
Let’s consider a few steps in the execution of the goal

:— append([a, bl, [c, d], Ans).
When stripped of syntactic sugar, this is equivalent to
:— append(a.b.[], c.d.[], Ans).

The Prolog system will attempt to match this goal to the clauses for append. It does this
by a process called unification, which means finding an assignment of values to the vari-
ables that makes the goal identical to the head of one of the clauses. In this case, the match
will succeed on the second clause with X =a,L=b.[],M=c.d.[], and Ans = a.N.
Hence, these variables are bound to these values (instantiated, in Prolog terminology), which
leads to the subgoal

:— append(b.[], c.d.[]l, N).

This will eventually result in N being bound to b.c.d. [] (you will fill in the steps in an
exercise). Then, since Ans = a.N, Ans will be bound to a.b.c.d. []. The latter, when
syntactically sugared on output, will be printed as

Ans = [a, b, c, d]
Compare the Prolog with the LISP definition of append:

(defun append (L M)
(if (null L)
M
(cons (car L) (append (cdr L) M))))

They are similar in that they are both recursive definitions based on the null list. They are
different in that the LISP definition uses car and cdr explicitly to break L into its com-
ponents, whereas the Prolog definition does not use car and cdr at all. Instead, by match-
ing a pattern such as X. L against a list such as a.b. [], it implicitly breaks the list into its
components X =aand L =b. [].°

5 Many Prologs allow [X‘L] as an alternate notation for a list whose head is X and whose tail is L.

13.3 DESIGN: DATA STRUCTURES 455

Frequently in Prolog selector functions are not needed to access the components of com-
posite data structures; instead, the data structures can be matched against the appropriate con-
structor expressions. This is essentially asking the question: “What two things would I have
to cons together to get a.b. [1?” Thus, “taking apart” is explained in terms of “putting
together.” Inverse operations are often thought of in this way. For example, we might ex-
plain 5 — 3 to a child by asking: “What number do I add to 3 to get 5?” This is the basis for
the definition of dif that we showed on p. 451.

Although matching is a very simple way to select components of structures, it is not
necessarily a very efficient way. Recall that LISP’s car and cdr functions are implemented
as simple pointer-following operations and thus are very efficient. In Prolog, component se-
lection is accomplished by pattern matching, which is usually much less efficient. Some Pro-
log implementors have developed optimizations that make component selection in Prolog al-
most as fast as in LISP.

B Exercise 13-11: Fill in the rest of the steps of the append example above.

Exercise 13-12: Define the assoc function (Chapter 9, Section 9.3) in Prolog.

Exercise 13-13: Write a predicate equal analogous to the LISP equal function. That
is, it determines if two lists are equal in all their elements and to arbitrary depth. Hint:
This is very simple in Prolog.

Exercise 13-14: Write clauses for a predicate sum_red (L,S) such that S is the sum-
reduction of the list L. (Use the sum predicate already defined and assume numbers are
represented in unary.)

Exercise 13-15: Write clauses for a predicate succ_map (L,M) such that the list M
is the result of taking the successor of every element of the list L.

Complex Structures Can Be Defined Directly

We have seen in the previous section show compound terms can be used to represent data
structures. In particular, we have used terms of the form cons (X, ¥) (or ‘X.Y’) to repre-
sent lists. This is such a common use of compound terms that many Prolog programmers
think of compound terms as records, similar to the records in Pascal and Ada. Thus, cons (X,
Y) is not thought of as a function application; rather, it is considered a record of type cons
with the fields X and Y. And, in fact, this is essentially the way many Prolog systems im-
plement compound terms.

We know from our investigation of LISP that any structure we want can be defined with
lists. In Prolog it is not necessary to do this since more complicated structures can be de-
fined directly as terms or predicates. For example, suppose we want to write a program for
performing symbolic differentiation of mathematical formulas. In most programming lan-
guages, it would be necessary to define data structures representing algebraic expression
trees. In Prolog we can simply use compound terms. For example, the expression ‘x? + bx +
¢’ could be represented by

plus(plus(sup(x, 2), times(b, x)), c)

456 LOGIC PROGRAMMING: PROLOG
Many Prolog dialects interpret the arithmetic operators as functors for constructing com-
pound terms, and in these dialects we could write
xT2 + b*x + c

Again, we must emphasize that this is just syntactic sugar for a compound term similar to
the one shown previously in prefix notation.

Given the infix notation for compound terms, the symbolic differentiation program is
easy to write and read (see Figure 13.2). Here, the terms represent themselves; there is no
need for a separate data structure for the program to manipulate. The Prolog system essen-
tially generates records of the form plus (X, Y), times (X, Y), and so on, but this is not

il a concern of the programmer. Thus, the Automation Principle is being obeyed.
B Exercise 13-16: Trace the execution of the following goal:

:— d(x, x12 + b*x + c, Ans).
Ans = 2 * xT(2-1) * 1 + (0 * x + b * 1) + 0

Notice that the expression is not simplified by these rules.

B Exercise 13-17: Trace the execution of the goal

- d(x, x + vy, A).

B Exercise 13-18: Trace the execution of the goal

:— d(t, 2*t + x, Rate).

B Exercise 13-19: Trace the execution of the goal

:— d(y, yTn / (x + vy), Dy).

B Exercise 13-20: Write a differentiation rule for negations. Assume “negative U” is writ-

ten ‘~U’.

B FExercise 13-21: Write a differentiation rule for the special case C*U, where C is atomic
and C # X.

d(X, U + VvV, DU + DV) :- d(X,U,DU), d4(X,V,DV).

d(X, U - v, DU - DV) :- d(X,U,DU), d(X,V,DV).

d(X, U*V, DU*V + U*DV) :- d(X,U,DU), d4d(X,V,DV).

d(x, u/v, (DU*V - U*DV)/V12) :- d4d(X,U,DU), d4(X,V,DV).

d(x, ufc, c*uft(c-1) *DU) :— d(X,U,DU), atomic(C), C \=X.

ax, x, 1).

d(x, ¢, 0) :— atomic(C), C \= X.

Figure 13.2 Symbolic Differentiation in Prolog

6 Some Prolog dialects permit programmers to define their own prefix, infix, and postfix functor symbols.

13.3 DESIGN: DATA STRUCTURES 457

Predicates Can Represent Structures Directly

We have said before that compound terms can often be replaced by predicates. For exam-
ple, instead of having terms plus (X,Y), times (X,Y), etc. representing arithmetic ex-
pressions, we could have predicates sum (X,Y,Z), prod (X,Y,Z), etc. Let’s consider the con-
sequences of this in more detail.

Consider the compound term (x + y) * (y + 1) representing an arithmetic ex-
pression. This is a description of a data structure—a tree—as can be seen by writing it in
prefix notation:

times (plus(x, y), plus(y, 1))
Thus, it is exactly analogous to a LISP structure such as
(times (plus x y) (plus y 1))

How can we express these same relationships in terms of predicates? In effect we need to
describe a tree in terms of relationships among its nodes. We can get a hint of how to do
this by recalling the kinship program in Figure 13.1. There we used the predicates father
and mother to describe a family tree. We can describe the relationships in an arithmetic
expression tree by predicates such as sum and prod.” For example, let sum (X,Y,Z) mean
that the sum of X and Y is Z. Then the expression (x + y) * (y + 1) is described
by the three facts

sum(x,y,tl).
sum(y,1,t2).
prod(tl,t2,t3).

since they say that the sum of x and y is t1, the sum of y and 1 is t2, and the product of
tl and t2 is £3. We can see the first difficulty with representing data structures as predi-
cates: the loss of readability.

Suppose we write our differentiation program (Figure 13.2) so that it works with ex-
pressions represented as predicates. The sum and product rules would look like this:

d(X,w,z) :- sum(U,V,W), d(X,U,DU), d(X,v,DV), sum(DU,DV,Z).

d(X,W,z) :- prod(U,V,W), d(x,u,pu), d4d(X,v,DV),
prod(DU,V,A), prod(U,DV,B), sum(A,B,Z).

d(Xx,Xx,1).

d(Xx,C,0) :- atomic(C), C \= X.

The sum rule does not look bad; it is quite readable: “The derivative with respect to X of W
is Z if: W is the sum of U and V, and the derivative with respect to X of U is DU, and”
The product rule is not so good though. The variables A and B get in the way; the only rea-
son they are there is that we have to be able to name the intermediate nodes in the expres-
sion tree. So the predicate representation also makes the rules less readable. There are more
subtle problems, however.

7 Here we use sum to represent an algebraic relationship between terms. There is no relationship between
this use of the predicate sum and its use to perform unary addition shown earlier.

458

LOGIC PROGRAMMING: PROLOG

Suppose we have the following fact in our database:
sum(x,1,z).
This says that the sum of x and 1 is z. Now suppose we enter the goal
:— d(x,z,D).

This asks the system to find a D such that the derivative with respect to x of z is D. Since
z is the sum of x and 1, we expect D to be the sum of 1 and 0.

Will the goal be satisfied? It unifies with the head of the sum rule by the assignments
X = x, W= z, Z = D, which leads to the subgoals

:— sum(U,V,z), d(x,U,bUu), d4d(x,V,DV), sum(DU,DV,D).

The first subgoal is satisfied by U = x and V = 1, since we have in our database the fact
sum(x, 1, z). Hence, we get the subgoals

.- d(x,x,DbU), d(x,1,DV), sum(DU,DV,D).

Now the first two subgoals here are satisfied by DU = 1 and DV = 0, so only one subgoal
is left:

:— sum(1l,0,D).

It seems that our program is done, but in fact this subgoal will fail, since there is no fact (or
rule) of the form sum (1, 0,D) in the database! Of course, if we had had the foresight to
make an assertion such as

sum(1l,0,a).

then the system would report the correct® answer D = a, but it is unreasonable to expect such
foresight. Had the answer been more complicated, the situation would be even worse, since
we would have had to anticipate the entire expression tree of the answer, else the system
would not find it.

Prolog Models a Closed World

What is the source of this unintuitive behavior? The deductive rules of Prolog are based on
a “closed world” assumption. This means that so far as Prolog is concerned, all that is true
about the world is what can be proved on the basis of the facts and rules in its database. In
many applications this is a reasonable assumption. For example, in our kinship program it
is reasonable to assume that there are no people and no relationships among people other
than those represented (explicitly or implicitly) in the database. It makes sense to assume
that there is no object having a given property if one cannot be found in the database. The
closed-world assumption is very reasonable in object-oriented kinds of applications, that is,
in applications in which the objects and relationships in the computer model those in a real
or imagined world.

8 The answer is correct because the fact sum (1,0, a) asserts that ‘a’ is the sum of 1 and 0.

13.3 DESIGN: DATA STRUCTURES 459

Where the closed-world assumption does not work well is in mathematical problems.
In mathematics an object is generally take to exist if its existence does not contradict the
axioms. Mathematically, it is natural to assume that an expression of the form ‘1 + (’ ex-
ists whenever one is needed. Its existence does not have to be explicitly asserted or prov-

used for expressing object-oriented relationships and compound terms should be used for
mathematical relationships.

Data Structures Are Inherently Abstract

Should Infinite Terms Be Permitted?

Suppose we have the fact equal (X, x) in the database and that We type in the goal :—
equal (£(Y),Y). What will happen? The only way to satisfy this goal is to unify
equal (f£(Y),Y) with equal (X, X). That is, we have to find bindings of X and v that
make these two relationships equal. The only way to do this is to bind Y = £ (v), which
makes the goal :- equal (£(Y), f(Y)) , Which obviously unifies with the fact
equal (X, X) by the assignment X = f (y). Since the goal has been successfully satisfied,
the Prolog system will print out the resulting bindings. We will see something like this:

Y = f(f
f(f

The system will continue printing * £ (* until we stop it. What has happened?
The system is attempting to print out the value of Y. But the value of v is £(Y). So to
print this it must print * £ (*, followed by the value of v, followed by) . But the value

460 LOGIC PROGRAMMING: PROLOG

of Y is £(Y), and so on and so on. The variable Y is in effect bound to an infinite term,
which we can see by substituting £ (Y) for Y every time it occurs:

Y = £(Y)
£(E£(Y))
E(E(E(Y))) |

E(E(E(E(CECECE(E(E(ECECEC -2))))))))))))

What are we to make of infinite terms? In the context of logic they are illegitimate, and if
Prolog implemented the resolution algorithm correctly, it would not permit them. However,
to prevent them would require checking to make sure that a variable is not bound to a term
containing itself. This “occurs check” is relatively expensive; it takes quadratic time. Since
unification is otherwise linear, implementing the check could significantly slow down the
execution of Prolog programs. Hence, most Prologs do not make the “occurs check” and thus
will behave as illustrated above. This is a lack of transparency.

Can this liability be turned into an asset? Or, as some would say, can this bug be turned
into a feature? A self-embedding term is not necessarily meaningless. If f is a function, then
the equation Y = f{Y) asserts that Y is a fixed point of the function f. Now, some functions
have fixed points and some do not. For example, the sine function has a fixed point at zero
(0 = sin 0); the logarithm function does not have a fixed point. Hence, in some contexts, the
equation Y = f(¥) may be perfectly meaningful.

But, you may object, an infinite term is an infinite data structure. Even if it makes sense
mathematically, it cannot have any use in a program. As the example shows, the computer
cannot even print it out. In fact, infinite terms such as these are representable on comput-
ers—by circularly linked lists. If we take a list Y = (f X) and store into the left (car) com-
ponent of its second cell a pointer back to the head of the list, then we will have a list sat-
isfying the equation Y = (f Y); see Figure 13.3. If we traverse this list by following the
pointers, it will look for all the world like an infinite data structure, but it is represented in
a finite amount of memory. In the case of the Prolog binding Y = £ (Y), the circular link is
through the symbol table that binds Y to its value.

We have previously noted (Chapter 11, Section 11.2) that there is no agreement on
whether circular structures should be permitted. There are certainly difficulties, both theo-
retical and practical (e.g., how do you print them?). On the other hand, Colmerauer and other
computer scientists have argued that circular structures are the natural way to represent in-
formation in a variety of domains, including language processing and optimization.

Y Figure 13.3 An Infinite Term as a Cyclic Structure

13.4 DESIGN: CONTROL STRUCTURES 461

B Exercise 13-22*: Discuss the usefulness of infinite terms. Show some situations in
which they would be convenient. How would you handle these situations if infinite terms
were prohibited? Should Prolog permit them or prohibit them?

13.4 DESIGN: CONTROL STRUCTURES

Logic Programming Separates Logic and Control

Logic programs do not have control structures in the usual sense.® In a conventional pro-
gramming language control structures determine the order in which the actions comprising
a program take place. This order is essential to the correctness of the program; indeed, it is
unusual when the order of statements can be changed without altering the meaning of the
program. Thus, the logic of a program is intimately related to its control.

Logic programming effects a much greater separation of logic and control. The order in
which the clauses of a program are written has no effect on the meaning of the program. In
other words, the logic of the program is determined by the logical interrelationships of the
clauses, not by their physical relationship.

Control affects the order in which actions occur in time. The only actions that occur in
the execution of a logic program are the generation and unification of subgoals. As we will
see, this order can have a major effect on the efficiency of the program. Hence, in logic pro-
gramming, issues of control affect only the performance of programs, not their meaning or
correctness.

The separation of logic and control is an important application of the Orthogonality Prin-
ciple. It means that a program can be developed in two distinct phases: logical analysis and

programming system, or it may be partially under the control of the programmer. For exam-
ple, the order in which the programmer writes clauses may affect the order in which subgoals
are generated and hence the program’s performance. Other systems allow the programmer to
give the interpreter hints, such as that certain predicates are functions. In every case, there is a
clear separation of logic—what the program does—from control—how it does it.

Top-Down Control Is Like Recursion

There are two principal ways in which subgoals can be generated: top-down and bottom-up.
In top-down control, we start from the goal and attempt to reach the hypotheses; in bottom-
up control, we start with the hypotheses and attempt to reach the goal.

? Note that in this section the term “logic program” refers to pure logic programs. We will see later that Pro-
log programs are not pure logic programs. Material in this section is based on the work of Robert Kowalski
(1979).

2 LOGIC PROGRAMMING: PROLOG

To illustrate the difference between these, we will use a simple example: the generation
of Fibonacci numbers. The Fibonacci numbers are the series

1,1,2,3,5,8,13, 21, ...

in which each number is the sum of the two previous numbers. Hence, if F), represents the
nth Fibonacci number, then

F0=1
F1 =1
9 Fn = Fn—l + Fn_z, forn>1

This can easily be expressed in a logic program in which the relationship £ib (N, F) means
that the Nth fibonacci number is F:!°

fib(0, 1).
fib(1, 1).
fib(N, F) (- N =M + 1, M = K + 1, fib(M, G), fib(K, H),

F =G+ H N > 1.

That is, the Nth Fibonacci number is F if there are natural numbers K and M, with N = M +
1> 1, M = K + 1, such that the Mth Fibonacci number is G, the Kth Fibonacci number is
H,and F=G + H.

Let’s trace the top-down execution of the goal

:— fib(2, F).

To satisfy this goal, we must find a clause with which it can be unified, that is, a clause that can
be made identical to the goal by some assignment of values to the variables of each. No assign-
ment of values to F will make fib (2, F) equal to either of the first two clauses, so the only
candidate for unification is the third clause. Clearly, the assignment N = 2 will make £ib (N, F)
equal to fib (2, F). Hence, to achieve the goal £ib (2, F), we must satisfy the subgoals

:(- 2 =M+ 1, M =K + 1, fibM,G), fib(K,H), F = G + H, 2 > 1.
The subgoal 2 > 1 is satisfied, so it can be discarded, leaving
:-= 2 =M+ 1, M = K + 1, fib(M,G), fib(K,H), F = G + H.

The assignment M = 1 allows the satisfaction of the subgoal 2 = M + 1,s0wegeta
new set of subgoals:

:~= 1 =K + 1, fib(1,G), fib(X,H), F = G + H.

(Notice that the assignment M = 1 has been made in all the subgoals.) Similarly, the as-
signment K = 0 leads to the subgoals

:—- fib(1,G6), fib(0,H), F = G + H.

10 Throughout the discussion of the £ib program, we use equations of the form Z = X + Y as abbreviations
for relationships of the form sum (X,Y,Z). The sum predicate was defined on p. 451.

13.4 DESIGN: CONTROL STRUCTURES 463

We have now reached the hypotheses since the assignments G = l1andH = 1allow fib(1,G)
to unify with £ib(1,1) and £ib(0,H) to unify with £ib (0, 1) . This leaves a single subgoal:

- F =1 + 1.

which is satisfied by the assignment F = 2, which is the answer sought.

Notice that the top-down execution of a logic program is very similar to the execution
of a recursive procedure. The order in which the steps are taken is essentially the same as
in this Pascal function:

function fib (N: integer): integer;

begin
if N = 0 or N = 1 then fib := 1;
else fib := fib(N - 1) + fib(N - 2)
end;

Notice that simple recursion is not a very efficient way of computing Fibonacci num-
bers. Suppose our goal had been

:— fib(10,F).

The top-down execution of this program would involve setting up the subgoals £ib (9, G)
and £ib (8, H). Suppose we began by attempting to satisfy £ib (8, H) ; this would require
computing the eighth Fibonacci number. After this is accomplished, we would attempt to sat-
isfy £ib (9, G), which would lead to the subgoals £ib (8, G") and £ib (7, H’). Now, if we
followed the top-down discipline naively, satisfying the goal £ib (8, G’) would require us to
recompute the eighth Fibonacci number again! This recomputation would take place at each
stage of the recursion, which results in a very inefficient algorithm (an algorithm whose exe-
cution time is an exponential function of N). For this reason, some logic programming systems
remember subgoals they have already satisfied so that they will not duplicate their satisfaction.

B Exercise 13-23: Prove that the naive top-down computation of £ib has exponential
time complexity.
B Exercise 13-24: Trace (by hand) the top-down execution of the goal

:— fib(3,Aa).

Exercise 13-25: Show the top-down satisfaction of the goal

:— grandparent (albert,victor) .

B Exercise 13-26: Show the top-down satisfaction of the goal

:—- ancestor (X,cindy), sibling(X,jeffrey).

Bottom-Up Control Is Like Iteration

A different strategy for controlling the generation of subgoals is bottom-up, in which we at-
tempt to reach the goal from the hypotheses. Consider the bottom-up satisfaction of the goal

:— fib(3,F).

T

464 LOGIC PROGRAMMING: PROLOG

We begin with the hypotheses, which are
fib(0,1), fib(1,1).

(For clarity, we will omit the hypotheses about integer arithmetic, which are built into the
system.) These two hypotheses can be unified with the right-hand side of

fib(N,F) :(- N =M + 1, M = K + 1, fib(M,G), fib(K,H),
F =G+ H N > 1.

by the value assignments K = 0,M = 1,N = 2,G = H = 1,andF = 2. This al-
lows us to conclude £ib (2, 2), which, combined with the existing hypotheses, yields

fib(0,1), £fib(1,1), £fib(2,2).

The last two of these can again be unified with the right-hand side of the above-mentioned
clause by the assignments K = 1,M = 2,N = 3,G = 2,H = 1,F = 3to yield
the hypotheses

fib(0,1), £fib(1,1), £fib(2,2), £ib(3,3).

The last of these hypotheses can be unified with the goal £ib (3, F) by the assignment
F = 3, which is the answer sought.

Notice that the order of operations resulting from a bottom-up execution is the same as
in an iterative program. The bottom-up execution of this program is analogous to that of the
Pascal function:

function fib (N: integer): integer;
var n, Fn, Fm, Fk: integer;

begin
Fn := Fm := Fk := 1;
n := 1;
while n < N do
begin
Fn := Fm + Fk;
Fk = Fm;
Fm := Fn;
n =n + 1
end;
fib := Fn;
end;

Notice that the bottom-up execution of the logic program is much more efficient than
its naive top-down execution since the bottom-up execution does not recompute Fibonacci
numbers needlessly. In fact, the time required for the bottom-up execution of this program
is a linear function of its input (N).

Pure top-down and pure bottom-up are not the only ways of executing logic programs.
We have already indicated a modification of top-down that remembers already satisfied sub-
goals. There are also various mixtures of top-down and bottom-up that work from both the
goals and the hypotheses and attempt to meet in the middle. The details of these approaches

13.4 DESIGN: CONTROL STRUCTURES 465

go beyond the scope of this book; the interested reader can find them discussed in books and
courses that deal with artificial intelligence and logic programming.

B Exercise 13-27: Show a bottom-up satisfaction of the goal

:— grandparent (albert,victor) .

B Exercise 13-28: Show a bottom-up satisfaction of the goal

:— ancestor (X,cindy), sibling(X,jeffrey).

Logic Programs Can Be Interpreted Procedurally

There is another way of looking at logic programs that makes them easier to compare with
programs in conventional languages. In this interpretation, clauses are viewed as procedure
definitions and relationships are viewed as procedure invocations. Consider a clause such as

fib(N,F) (- N =M + 1, M = K + 1, fib(M,G), fib(K,H),
F =G+ H N > 1.

The head (left-hand side) of the clause is analogous to the head of a procedure declaration; it
defines a template for invoking the procedure. The body (right-hand side) of the clause is
analogous to the body of a procedure declaration; it is composed of a series of procedure calls.
Multiple clauses that define the same procedure are analogous to the branches of a conditional
in a conventional definition of a procedure (for example, compare the LISP and Prolog pro-
grams for append on p. 454). A goal is just the procedure call that starts a program going,
and a hypothesis is just a procedure that returns without invoking any other procedures.
Consider the procedural interpretation of the goal

:— fib(3,F).

We are invoking the procedure £ib with the input parameter N = 3 and the output para-
meter F unbound. The first subgoal in the body of fib, N = M + 1, unifies N with M +
1, which results in M being bound to 2. The second subgoa, M = K + 1,bindsK to 1.
Next we have two recursive invocations of £ib : £ib(2,G) and £ib (1,H). The second
of these is an invocation of the hypothesis

fib(1,1).

which is really just an abbreviation for

fib(1,1) :-.
Since this has no procedure invocations on the right, it immediately returns H = 1. When
fib(2, G) returnsits result G = 2, we will be able to return the result of the program,

whichis F = 3,

Procedure Invocations Can Be Executed in Any Order

One difference between the procedural interpretation of logic programs and procedures in
other languages is immediately apparent: The statements in the body of a logic procedure

*
466 LOGIC PROGRAMMING: PROLOG

need not be executed in any particular order. That is, £ib(2,G) can be executed before
fib(1,H), or vice versa. As we have noted before, this is very different from conventional
languages in which the order in which things are done is essential to the meaning of the pro-
gram. In a logic program, the procedure calls can be executed in any order or even concur-
rently. This makes logic programming languages a potential way to program multiprocess-
ing and highly parallel computers.!! '

Backtracking Is Necessary and Frequent

In the examples that we have discussed, we have assumed that when there were several
o clauses defining a procedure, the correct clause was always selected by a procedure invoca-
tion. For example, the invocation £ib (1, G) matches the head of both of these clauses:

fib(N,F) (- N =M + 1, M = K + 1, fib(M,G), fib(K,H),
F =G+ H N> 1.

fib(1,1).
Suppose that we select the first clause for execution; this will set up the subgoals
:(-1 =M+ 1, M=K+ 1, fib(M,G), fib(XK,H), F = G + H, 1 > 1.

Notice that the last subgoal, 1 > 1, cannot be satisfied; therefore, there is no way to sat-
isfy this set of subgoals. In other words, the invocation £ib (1, G) fails when we select the
first clause. Hence, the interpreter must backtrack to the last point where it made a choice
[in this case, selecting the first of the two clauses that match £ib (1, G)] and make a dif-
ferent choice. In this example, the only other choice is the hypothesis £ib (1, 1), which
will allow the goal to be satisfied.

It may be that the system tries all of the alternatives available for a procedure call and
that it cannot satisfy the subgoal with any of them. If this occurs, the system must backtrack
further, to an earlier choice, and try additional alternatives there. If the system runs out of
all alternatives, the goal is unsatisfiable, which must be reported to the user.

The result of this process is that a logic programming system spends a lot of its time
backtracking. In most languages and systems, backtracking is considered an unusual event
that is usually connected with error recovery. Therefore, backtracking is commonly consid-
ered expensive. Since in logic programs backtracking is the rule rather than the exception,
much of the challenge of the implementation of logic programming languages is the devel-
opment of more efficient backtracking mechanisms. These mechanisms are beyond the scope
of this book.

Input-Output Parameters Are Not Distinguished

There is another major difference between procedures in logic programming languages and
those in other languages. We have seen that a goal such as

:— fib(3,F).

11 Again, note that we are talking about pure logic programs; we discuss later the extent to which these ob-
servations apply to Prolog.

13.4 DESIGN: CONTROL STRUCTURES 467

will result in binding F = 3; this tells us that the third Fibonacci number is 3. The system
proves constructively that there is an F such that £ib (3, F). Consider instead this goal:

:— fib(N,3).

which asks the system to prove constructively that there is a number N such that £ib (N, 3).
This seems to be a request for the number N such that the Nth Fibonacci number is 3. Will
this work? Let’s trace its execution.

The goal £ib (N, 3) sets up these subgoals:

- N=M+1, M=K+ 1, £fib(M,G), fib(K,H), 3 =G+ H, N>1.

To determine if these subgoals can be satisfied, the interpreter must try various value as-
signments to the variables. For example, it might try in order

G =0, H=0

G =0, H=1

G =1, H =0

G =1, H =1

G =0, H =2

and so on, until it reaches G = 1 andH = 2, since this is the first assignment that satis-
fies3 = G + H. This value assignment leads to the subgoals

- N=M+ 1, M =K + 1, fibM,1), fib(K,2), N > 1.

The subgoal £ib (M, 1) unifies with the hypothesis fib (1, 1) by the assignment M =
1, which leads to

:- N=1+1, 1 =K + 1, fib(X,2), N > 1.

Only the assignments N = 2, K = 0 will allow satisfaction of N = 1 + land1l =
K + 1, so we get the subgoal

:— £ib(0,2).
This unifies with the head of

fib(N,F) :- N = M + 1,

M =K + 1, fib(M,G), fib(K,H),
F =G+ H N > 1

yielding the subgoals:
=0 =M+ 1, M=K + 1, fib(M,QG), fib(K,H), 2 = G + H, 0 > 1.

Since the last subgoal (0 > 1) is not satisfiable, we must backtrack to the last choice and
seek a new alternative.

In this case, the only choice was the selection of the values G = 1,H = 2 to satisfy
F = G + H. Suppose instead we continue enumerating values until we reach G = 2,H
= 1; this yields the subgoals

:- N =M+ 1, M =K + 1, fib(M,2), fib(X,1), N > 1.

468

LOGIC PROGRAMMING: PROLOG

But £ib (K, 1) unifies with the fact fib(1,1) by the assignment K = 1, so we get the
subgoals

:t=- N=M+ 1, M =1 + 1, fib(M,2), N > 1.
This leads to the value assignments M = 2,N = 3 and the subgoal
:— fib(2,2).

Since the second Fibonacci number is in fact 2, we can see that this subgoal is satisfiable
(you will provide the details in an exercise). Therefore, the value assignment N = 3 will
be returned as the answer to

:— fib(N, 3).
N = 3

Notice the remarkable thing that logic programming permits: Neither parameter of £ib
is inherently an input or an output. If either is supplied as an input, then the other can be
computed as an output. It is the use of £ib in each particular context that determines the
function of its parameters in that context. One way of looking at this is that a logic program
can be run either forward or backward as needed!

We summarize: In the goal : - fib (N,F), if N is supplied as an input, then F can be
computed as an output; if F is supplied as an input, then N can be computed as an output.
Also, we have seen in the satisfaction of goals such as £ib (2, 2) that both F and N can
be supplied as inputs. What happens if neither N nor F is supplied as an input? In this case,
we are asking the system to prove constructively that there are N and F such that £ib (N, F)
is true. Of course, there are, and the system immediately finds N = 0,F = 1:

:— fib(N,F).
N =20, F =1

As usual we can type a semicolon to request the system to search for other solutions, and it
finds them:

:— fib(N,F).
N =0, F = 1;
N =1, F = 1;
N =2, F = 2;
N =3, F = 3;
N =4, F = 5;
N =5, F = 8
ves

The response yes indicates that there may be additional solutions. Hence, our logic program
fib can be used as a way of enumerating the Fibonacci numbers.

Such enumeration could be required, for example, during backtracking. Suppose we
wanted to search for an N such that N + Fy = 13. We could enter the goal

:— fib(N,F), N + F = 13.
N =5, F = 8

13.4 DESIGN: CONTROL STRUCTURES 469

The subgoal fib (N, F) is initially satisfied by N = 0, F = 1, but this assignment does
notsatisfy N + F = 13, Therefore, we backtrack to £ib (N, F) to find another N, F)
pair satisfying this relationship. Eventually this backtracking produces the pair N = 5,
F = 8, which satisfies the goal.

B Exercise 13-29: Show that the goal :~ fib(2,2) can be satisfied.

B Exercise 13-30: Trace in detail the satisfaction of the goal : - fib(N,F) fromN =
0 throughN = 3.

B Exercise 13-31: Trace in detail the satisfaction of

:— fib(N,F), N + F = 9.

B Exercise 13-32: Explain what happens when we enter the goal
:= fib(N,F), N + F = 10.

Suggest ways of avoiding the difficulty.

Prolog Uses Depth-First Search

In this section we have been discussing logic programming’s separation of logic and con-
trol. With this separation the programmer worries about the logical relationships in the pro-
gram, while the system worries about implementing a proper control strategy to execute the
program. Recall that avoiding the procedural “how to” issues is the whole point of nonpro-
cedural programming. We will see that this separation holds only for pure logic program-
ming languages, that is, for logic programming languages that implement some complete de-
ductive algorithm (such as J. Alan Robinson’s resolution algorithm). Unfortunately, it does
not hold for Prolog.

Prolog abandons the separation of logic and control by specifying the control regime to
be used, rather than leaving it up to the Prolog system. The Prolog language is defined to
use a depth-first search strategy. This design decision has many consequences, both good
and bad, that we discuss in the remainder of this section. Before investigating these, how-
€ver, we must say exactly what we mean by depth-first search.

The easiest way to understand Prolog’s control strategy is to remember that it does every-
thing in a specific order: first to last (i.e., top to bottom, left to right). Thus, if we have the
subgoals

:— ancestor (X, cindy), sibling(X,jeffrey) .

Prolog will attempt to satisfy them in the order written. Hence, the first subgoal is ances-
tor (X, cindy). To satisfy this it will try the clauses for ancestor in the order in which
they were entered into the database. Thus, it starts with

ancestor (X,Z) :- parent (X,2).
Replacing ancestor (X, cindy) by parent (X, cindy) leads to the subgoals

:— parent (X, cindy), sibling(X,jeffrey) .

470 LOGIC PROGRAMMING: PROLOG

Notice that the new subgoal, parent (X, cindy) is put at the beginning of the list of sub-
goals; this leads to a depth-first search order.

Again, Prolog starts with the first subgoal on the list of subgoals; in this case, it is par-
ent (X, cindy). There are two clauses for parent and the first, parent (X,Y) :-
father (X, Y), leads to the subgoals

:— father(X,cindy), sibling(X,jeffrey).

The subgoal father (X, cindy) unifies with the fact father (george, cindy) by the
assignment X = george, so we get the subgoal

:— sibling(george, jeffrey).

And so on. A complete trace (such as produced by a Prolog system) is shown in Figure 13.4.
(Note that Exit means successful satisfaction of a goal and Fail means unsuccessful sat-
isfaction of a goal. This is common Prolog terminology.)

If there had been a failure in the satisfaction of ancestor (X, cindy), the system
would have backtracked, trying additional alternatives in order. It would not move on to the
subgoal sibling (X, jeffrey) until an X satisfying the first subgoal had been found.

:— ancestor (X,ci<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>